Applications of Forces

In this chapter, you will learn to solve a areater range of problems involving static particles, where tension, inclined
planes and limiting friction need to be accounted for. You will also learn how to deal with static rigid bodies and
. polanes and dimitings
conected particles on inclined planes.

Static equilibrium

If a particle is in static equilibrium, then the resultant force in any direction is equal to 0 and the particle is at rest.
To solve problems involving particles in static equilibrium you can use a three-step procedure

1. Draw a detailed diagram showing all the forces acting on the particle.
2. Resolve forces in the horizontal and vertical direction. If the particle is on an inclined plane however, then

You should resolve parallel and perpendicular to the plane instead.
Example 1: The following diagram shows a particle in static equilibrium. Find the magnitude of P.

Resolving in the horizontal direction:	$\begin{aligned} & 4 \cos (45)+P \cos (\theta)-7=0 \\ & \therefore P \cos (\theta)=7-2 \sqrt{2} \end{aligned}$
Resolving in the vertical direction:	$\begin{aligned} & 4 \sin (45)-P \sin (\theta)=0 \\ & \therefore P \sin (\theta)=2 \sqrt{2}[2] \end{aligned}$
Squaring equations [1] and [2] and adding together:	$\begin{aligned} & {[1]^{2} \Rightarrow P^{2} \cos ^{2} \theta=17.402} \\ & {[2]^{2} \Rightarrow P^{2} \sin ^{2} \theta=8} \\ & {[1]^{2}+[2]^{2}:} \\ & P^{2} \sin ^{2}(\theta)+P^{2} \cos ^{2}(\theta)=25.402 \end{aligned}$
Factoring out P^{2} :	$\Rightarrow P^{2}\left(\sin ^{2}(\theta)+\cos ^{2}(\theta)\right)=25.402$
$\begin{aligned} & \text { But since } \\ & \sin ^{2}(\theta)+\cos ^{2}(\theta)=1 \end{aligned}$	$\begin{aligned} & \Rightarrow P^{2}(1)=25.402 \\ & \therefore P=5.04 \mathrm{to} \text { to } 3 \text { s. } \end{aligned}$

Friction with static particles

When considering a particle in static equilibrium on a rough surface, you need to be able to model the frictional force acting upon the particle. Recall from chapter 5 that the coefficient of friction, μ, is a constant specific to a pair of
surfaces that tells us how rough the two surfaces are. μ can take any value between 0 and 1 . The larger μ is, the greater the roughness of the two objects.

For a particle at rest on a rough surface, the frictional force F is such that $F \leq \mu R$, where μ is the coefficient of friction and R is the reaction force normal to the surface.
The maximum value of the frictional force is reached when the particle is on the point of moving. This sis when the particle is said to be in limiting equilibrium, where $F_{\max }=\mu R$.

Remember that the frictional force will always oppose the direction the particle would move in if the
frictional force was not there.

Example 2: A box of mass 0.3 kg lies on a rough plane inclined at 33° to the horizontal. The box is held in equilibrium by a force of magnitude $3 N$ acting up the plane, in a direction parallel to the line of greatest slope of the plane. The particle is on the point of slipping up the plane. Find the coefficient of friction between the particle and the plane.

```
We start by drawing a detailed diagram
down the slope since the box is on the
point of moving up the plane.
```

Resolving parallel to the plane:
Resolving perpendicular to the plane:
We are told that the particle is on the point of slipping up the plane, so we know that $F_{\text {max }}=\mu R$ applies here.

$R-0.3 \cos 30=0$
$R=2.46 \mathrm{~N}$
$\begin{aligned} & R=2.546 \mathrm{~N} \\ &=\mu R\end{aligned}$
$F_{\text {max }}=\mu R$
$\because: .53=2.546 \times \mu$
$=1.53$
$\Rightarrow \mu=\frac{1.53}{2.54 \mathrm{~s}}=0.60$ to $2 \mathrm{~d} . \mathrm{p}$

Harder statics
Harder problems will involve weight, tension, pulleys and inclined planes. The same 3 -step procedure can be applied to these questions, but there are typically more forces to mode.
Example 2: A smooth bead B is threaded on a light inextensible string. The ends of the string are attached to wo fixed points A and C where A is vertically above C. The bead is held in equilibrium by a horizontal force of magnitude $2 N$. The sections $A B$ and $B C$ of the string make angles of 30° and 60° with the vertical espectively. Find: a) The tension in the string. b) The mass of the bead.

We start with a detailed diagram:	
	$T \operatorname{Tcos30-mg-T\operatorname {cos}60=0}$
Resolving in the vertical direction:	$\therefore T(\cos 30-\cos 60)=m g$ $\cos 30-\cos 60$
Making T the subject:	$T \sin 30+T \sin 60-2=0$

Static rigid bodies

metimes you might need to consider the rotational forces acting on an object in static equilibrium. In such cases you can model the object as arigid
resolving forces to solve problems.

If you are told that a rigid body is in equilibrium, then you can assume:

- The resultant force in any direction is 0
- The resultant moment is 0 . (i.e. if you take moments about any point, the sum of the moments will be 0)

Questions involving static rigid bodies often involve rods and ladders resting on rough surfaces. It is important that you are able to accurately model all of the forces acting on the rod. There are four steps which you will need to carry
out for such questions:

- Take moments about a point and set the resultant moment to be 0 . Usual
- Resolve in the vertical direction and set the resultant force to be 0 .
- Resolve in the horizontal direction and set the resultant force to be 0 .
- If you are told that the rod is in limiting equilibrium with any of the surface it is in contact with, you can use the fact that $F_{\text {max }}=\mu R$. Otherwise you can use $F \leq \mu R$.
Note that you won't necessarily need to use every one of these steps for a particular question.

Edexcel Stats/Mech Year 2
Example 3: A uniform ladder $A B$ has length 7 m and mass 20kg. The ladder is resting against a smooth inclined at 35° to the horizontal Find the normal and frictional components of the contact force at A, and hence find the least possible value of the coefficient of friction between the ladder and the ground.

We start with a detailed diagram. R is us

to denote the reaction forces wh
denotes the frictional forces.

Taking moments about A, taking the
clockwise direction to be positive:
$2 \operatorname{gcos}(35)(3.5)-R_{c}(5)=0$
$20 g \cos (35)(3.5)$
$R_{c}=\frac{20 g \cos (35)(3.5)}{5}=112.4 \mathrm{~N}$

Resolving in the vertical direction. Since we know the value of R_{C}, we can find R_{A}

To find F_{A}, we can resolve horizontally.
Recall that in general, we have that
$F \leq \mu R$. This means that $\mu \geq F$. Hence the
least possible value of μ is when $\mu=\frac{F}{R}$ (ie.
$F=\mu R$). So letting $F_{A}=\mu R$:
Solving for μ :

Dynamics and connected particles
Yemember that:

- If both particles are not moving along the same straight line, then you must consider them separately.

If a particle is moving along a rough surface, then the frictional force acting is maximum (limiting). Therefore, $F_{\text {max }}=\mu R$ applies.
Example 4: Two particles P and Q of mass 2 kg and 3 kg respectively are connected by a light inextensible which is fixed at the top of a rough inclined plane. The plane is inclined to the horizontal at an angle of 30°. Particle P is held at rest on the inclined plane and Q hangs freely with the string vertical and taut. Particle P is released and it accelerates up the plane at
$2.5 m \mathrm{~s}^{-2}$. Find: a) the tension in the string and b) the coefficient of friction between P and the plane.
We start with a detailed diagram.

	-
Using $F=m a$ for Q in the vertical direction taking downwards to be positive:	$\begin{aligned} & 3 g-T=3(2.5) \\ & \therefore T=3 g-3(2.5)=21.9 N \end{aligned}$
Resolving forces acting on P perpendicular to the plane:	$\begin{aligned} & R-2 g \cos 30=0 \\ & \therefore R=2 g \cos 30=\frac{49 \sqrt{3}}{5}=16.97 \end{aligned}$
Using $F=m a$ for P along the slope:	$T-2 g \sin 30-F_{\text {max }}=(2)(2.5)$
Making $F_{\text {max }}$ the subject and substituting $T=21.9$:	$\begin{aligned} & F_{\max }=T-2 g \sin 30-5=7.1 \\ & \Rightarrow F_{\max }=7.1 \end{aligned}$
Using $F_{\text {max }}=\mu \mathrm{R}$:	$\mu \mathrm{R}=7.1$
We already found R so we can solve for μ :	$\mu=\frac{7.1}{R}=\frac{7.1}{16.77}=0.418$.

